p-group, metabelian, nilpotent (class 2), monomial
Aliases: C25.32C22, C24.242C23, C23.304C24, C22.1222+ 1+4, (C2×D4)⋊41D4, (C22×C4)⋊19D4, C23⋊5(C4○D4), C23⋊2D4⋊4C2, C23⋊Q8⋊3C2, (C23×C4)⋊19C22, C23.147(C2×D4), C2.12(D4⋊5D4), C22.14C22≀C2, (C22×D4)⋊54C22, (C22×Q8)⋊52C22, C23.23D4⋊21C2, C23.34D4⋊17C2, (C22×C4).786C23, C22.184(C22×D4), C2.C42⋊15C22, C2.8(C22.29C24), C2.16(C22.19C24), (C2×C22≀C2)⋊3C2, (C2×C4).300(C2×D4), (C22×C4○D4)⋊2C2, C2.11(C2×C22≀C2), (C2×C22⋊C4)⋊9C22, (C22×C22⋊C4)⋊16C2, C22.183(C2×C4○D4), SmallGroup(128,1136)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.304C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=f2=g2=1, e2=a, ab=ba, ac=ca, ede-1=gdg=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 1140 in 528 conjugacy classes, 120 normal (18 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C22⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C22≀C2, C23×C4, C23×C4, C22×D4, C22×D4, C22×Q8, C2×C4○D4, C25, C23.34D4, C23.23D4, C23⋊2D4, C23⋊Q8, C22×C22⋊C4, C2×C22≀C2, C22×C4○D4, C23.304C24
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22≀C2, C22×D4, C2×C4○D4, 2+ 1+4, C2×C22≀C2, C22.19C24, C22.29C24, D4⋊5D4, C23.304C24
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 21)(2 22)(3 23)(4 24)(5 15)(6 16)(7 13)(8 14)(9 32)(10 29)(11 30)(12 31)(17 27)(18 28)(19 25)(20 26)
(1 25)(2 26)(3 27)(4 28)(5 9)(6 10)(7 11)(8 12)(13 30)(14 31)(15 32)(16 29)(17 23)(18 24)(19 21)(20 22)
(1 12)(2 11)(3 10)(4 9)(5 28)(6 27)(7 26)(8 25)(13 20)(14 19)(15 18)(16 17)(21 31)(22 30)(23 29)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21)(2 20)(3 23)(4 18)(5 9)(7 11)(13 30)(15 32)(17 27)(19 25)(22 26)(24 28)
(1 19)(2 20)(3 17)(4 18)(5 30)(6 31)(7 32)(8 29)(9 13)(10 14)(11 15)(12 16)(21 25)(22 26)(23 27)(24 28)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,12)(2,11)(3,10)(4,9)(5,28)(6,27)(7,26)(8,25)(13,20)(14,19)(15,18)(16,17)(21,31)(22,30)(23,29)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21)(2,20)(3,23)(4,18)(5,9)(7,11)(13,30)(15,32)(17,27)(19,25)(22,26)(24,28), (1,19)(2,20)(3,17)(4,18)(5,30)(6,31)(7,32)(8,29)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,21)(2,22)(3,23)(4,24)(5,15)(6,16)(7,13)(8,14)(9,32)(10,29)(11,30)(12,31)(17,27)(18,28)(19,25)(20,26), (1,25)(2,26)(3,27)(4,28)(5,9)(6,10)(7,11)(8,12)(13,30)(14,31)(15,32)(16,29)(17,23)(18,24)(19,21)(20,22), (1,12)(2,11)(3,10)(4,9)(5,28)(6,27)(7,26)(8,25)(13,20)(14,19)(15,18)(16,17)(21,31)(22,30)(23,29)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21)(2,20)(3,23)(4,18)(5,9)(7,11)(13,30)(15,32)(17,27)(19,25)(22,26)(24,28), (1,19)(2,20)(3,17)(4,18)(5,30)(6,31)(7,32)(8,29)(9,13)(10,14)(11,15)(12,16)(21,25)(22,26)(23,27)(24,28) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,21),(2,22),(3,23),(4,24),(5,15),(6,16),(7,13),(8,14),(9,32),(10,29),(11,30),(12,31),(17,27),(18,28),(19,25),(20,26)], [(1,25),(2,26),(3,27),(4,28),(5,9),(6,10),(7,11),(8,12),(13,30),(14,31),(15,32),(16,29),(17,23),(18,24),(19,21),(20,22)], [(1,12),(2,11),(3,10),(4,9),(5,28),(6,27),(7,26),(8,25),(13,20),(14,19),(15,18),(16,17),(21,31),(22,30),(23,29),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21),(2,20),(3,23),(4,18),(5,9),(7,11),(13,30),(15,32),(17,27),(19,25),(22,26),(24,28)], [(1,19),(2,20),(3,17),(4,18),(5,30),(6,31),(7,32),(8,29),(9,13),(10,14),(11,15),(12,16),(21,25),(22,26),(23,27),(24,28)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | ··· | 2S | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 4O | 4P | 4Q | 4R |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C23.304C24 | C23.34D4 | C23.23D4 | C23⋊2D4 | C23⋊Q8 | C22×C22⋊C4 | C2×C22≀C2 | C22×C4○D4 | C22×C4 | C2×D4 | C23 | C22 |
# reps | 1 | 1 | 6 | 2 | 2 | 1 | 2 | 1 | 4 | 8 | 8 | 2 |
Matrix representation of C23.304C24 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 3 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 4 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,3,4,0,0,0,0,0,0,0,4,0,0,0,0,4,0],[3,0,0,0,0,0,0,2,0,0,0,0,0,0,3,3,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;
C23.304C24 in GAP, Magma, Sage, TeX
C_2^3._{304}C_2^4
% in TeX
G:=Group("C2^3.304C2^4");
// GroupNames label
G:=SmallGroup(128,1136);
// by ID
G=gap.SmallGroup(128,1136);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,253,120,758,723,675]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=f^2=g^2=1,e^2=a,a*b=b*a,a*c=c*a,e*d*e^-1=g*d*g=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations